Overview | PrinterFriendlyVersion |
Ex/Em(nm) | 571/585 |
MW | N/A |
CAS# | N/A |
Solvent | N/A |
Storage | F/D/L |
Category | CellBIOLOGy CellMetabolism |
Related | RedoxEnzymes BiochemicalAssays |
Spectrum | AdvancedSpectrumViewer |
1.PrepareNADHstocksolution:
Add200µLofPBSbufferintothevialofNADHstandard(ComponentC)tohave1mM(1nmol/µL)NADHstocksolution.
Note:TheunusedNADHstocksolutionshouldbedividedintosingleusealiquotsandstoredat-20oC.
2.PrepareNAD/NADHreactionmixture:
Add10mLofNADHSensorBuffer(ComponentB)tothebottleofNAD/NADHRecyclingEnzymeMixture(ComponentA),andmixwell.
Note:ThisNAD/NADHreactionmixtureisenoughfortwo96-wellplates.TheunusedNAD/NADHreactionmixtureshouldbedividedintosingleusealiquotsandstoredat-20oC.
3.PrepareseriallydilutedNADHstandards(0to10μM):
3.1 Add30µLof1mMNADHstocksolution(fromStep1)into970µLPBSbuffer(pH7.4)togenerate30µM(30pmols/µL)NADHstandardsolution.
Note:DilutedNADHstandardsolutionisunstable,andshouldbeusedwithin4hours.
3.2 Take200µLof30µMNADHstandardsolution(fromStep3.1)toperform1:3serialdilutionstoget10,3,1,0.3,0.1,0.03and0µMseriallydiltuedNADHstandards.
3.3 AddseriallydilutedNADHstandardsand/orNAD/NADHcontainingtestsamplesintoasolidblack96-wellmicroplateasdescribedinTables1and2.
Note:Preparecellsortissuesamplesasdesired.
Table1.LayoutofNADHstandardsandtestsamplesinasolidblack96-wellmicroplate
BL | BL | TS | TS | TS(NADH) | TS(NADH) | TS(NAD) | TS(NAD) |
|
|
|
|
NS1 | NS1 | …. | …. | …. | …. | …. | …. |
|
|
|
|
NS2 | NS2 |
|
|
|
|
|
|
|
|
|
|
NS3 | NS3 |
|
|
|
|
|
|
|
|
|
|
NS4 | NS4 |
|
|
|
|
|
|
|
|
|
|
NS5 | NS5 |
|
|
|
|
|
|
|
|
|
|
NS6 | NS6 |
|
|
|
|
|
|
|
|
|
|
NS7 | NS7 |
|
|
|
|
|
|
|
|
|
|
Note:NS=NAD/NADHStandards;BL=BlankControl;TS=TestSamples;TS(NADH)=TestSamplestreatedwithNADHExtractionSolutionfor10to15minutes,thenneutralizedbyNADExtractionSolution;TS(NAD)=TestSamplestreatedwithNADExtractionSolutionfor10to15minutes,thenneutralizedbyNADHExtractionSolution.
Table2Reagentcompositionforeachwell
NADHStandard | BlankControl | TestSample(NAD/NADH) | TestSample (NADHExtract) | TestSample (NADExtract) |
SerialDilutions*:25μL | PBS:25μL | TestSample:25μL | TestSample:25μL | TestSample:25μL |
ComponentF: 25μL | ComponentF:25μL | ComponentF:25μL | ComponentD:25μL | ComponentE:25μL |
Incubateatroomtemperaturefor10to15minutes | ||||
ComponentF:25μL | ComponentF:25μL | ComponentF:25μL | ComponentE:25μL | ComponentD:25μL |
Total:75μL | Total:75μL | Total:75μL | Total:75μL | Total:75μL |
*Note:AddtheseriallydilutedNADHstandardsfrom0.03μMto30μMintowellsfromNS1toNS7induplicate.HighconcentrationofNADH(e.g.,>300μM,finalconcentration)maycausereducedfluorescencesignalduetotheoveroxidationofNADHsensor(toanon-fluorescentproduct).
3.4 ForNADHExtraction(NADH):Add25μLofNADHExtractionSolution(ComponentD)intothewellsofNAD/NADHcontainingtestsamples.Incubateatroomtemperaturefor10to15minutes,thenadd25μLofNADExtractionSolution(ComponentE)toneutralizetheNADHextractsasdescribedinTables1&2.
ForNADExtraction(NAD):Add25μLofNADExtractionSolution(ComponentE)intothewellsofNAD/NADHcontainingtestsamples.Incubateatroomtemperaturefor10to15minutes,thenadd25μLofNADHExtractionSolution(ComponentD)toneutralizetheNADextractsasdescribedinTables1&2.
ForTotalNADandNADH:Add25μLof NAD/NADHControlSolution(ComponentF)intothewellsofNADHstandardsandNAD/NADHcontainingtestsamples.Incubateatroomtemperaturefor10to15minutes,andthenadd25μLofControlSolution(ComponentF)asdescribedinTables1and2.
Note1:Preparecellsortissuesamplesasdesired.NAD/NADHLysisBuffer(ComponentG)canbeusedforlysingthecells(Seeappendixfordetails).
Note2:Inhealthymammaliancells,thereismoreNADcomparetoNADH,soonecansimplyusetotalNADandNADHminustheNADtocalculatetheamountofNADH.
4.RunNAD/NADHassayinsupernatantsreaction:
4.1 Add75μLofNADHreactionmixture(fromStep2)intoeachwellofNADHstandard,blankcontrol,andtestsamples(fromStep3.4)tomakethetotalNADHassayvolumeof150µL/well.
4.2 Incubatethereactionatroomtemperaturefor15minutesto2hours,protectedfromlight.
4.3 MonitorthefluorescenceincreasewithafluorescenceplatereaderatEx/Em=540/590nm(cutoff570nm).
Note:Thecontentsoftheplatecanalsobetransferredtoawhiteclearbottomplateandreadbyanabsorbancemicroplatereaderatthewavelengthof576±5nm.Theabsorptiondetectionhaslowersensitivitycomparedtofluorescencereading.
References&Citations | CitationExplorer |
CelastrolattenuatesangiotensinIImediatedhumanumbilicalveinendothelialcellsdamagethroughactivationofNrf2/ERK1/2/Nox2signalpathway
Authors:MiaoLi,XinLiu,YongpengHe,QingyinZheng,MinWang,YuWu,YuanpengZhang,ChaoyunWang
Journal:EuropeanJournalofPharmacology(2017):124--133
CytosolicRedoxStatusofWineYeast(SaccharomycesCerevisiae)underHyperosmoticStressduringIcewineFermentation
Authors:FeiYang,CaitlinHeit,DebraLInglis
Journal:Fermentation(2017):61
EpigeneticregulationofRunx2transcriptionandosteoblastdifferentiationbynicotinamidephosphoribosyltransferase
Authors:MinLing,PeixinHuang,ShamimaIslam,DanielPHeruth,XuananLi,LiQinZhang,Ding-YouLi,ZhaohuiHu,ShuiQingYe
Journal:Cell&Bioscience(2017):27
MCU-dependentmitochondrialCa2+inhibitsNAD+/SIRT3/SOD2pathwaytopromoteROSproductionandmetastasisofHCCcells
Authors:TRen,HZhang,JWang,JZhu,MJin,YWu,XGuo,LJi,QHuang,HYang
Journal:Oncogene(2017)
Metabolicandmolecularinsightsintoanessentialroleofnicotinamidephosphoribosyltransferase
Authors:LiQZhang,LeonVanHaandel,MinXiong,PeixinHuang,DanielPHeruth,CharlieBi,RogerGaedigk,XunJiang,Ding-YouLi,GeraldWyckoff
Journal:CellDeath&Disease(2017):e2705
PyrroloquinolineQuinone,aRedox-activeo-Quinone,StimulatesMitochondrialBiogenesisbyActivatingSIRT1/PGC-1αSignalingPathway
Authors:KazuhiroSaihara,RyosukeKamikubo,KazutoIkemoto,KojiUchida,MitsuguAkagawa
Journal:Biochemistry(2017)
ResveratrolattenuatesexcessiveethanolexposureinducedinsulinresistanceinratsviaimprovingNAD+/NADHratio
Authors:GangLuo,BingqingHuang,XiangQiu,LinXiao,NingWang,QinGao,WeiYang,LipingHao
Journal:MolecularNutrition&FoodResearch(2017)
ASnapshotofthePlantGlycatedProteomeSTRUCTURAL,FUNCTIONAL,ANDMECHANISTICASPECTS
Authors:TatianaBilova,ElenaLukasheva,DominicBrauch,UtaGreifenhagen,GaganPaudel,ElenaTarakhovskaya,NadezhdaFrolova,JulianeMittasch,GerdUlrichBalcke,AlainTissier
Journal:JournalofBiologicalChemistry(2016):7621--7636
AMPKactivationprotectscellsfromoxidativestress-inducedsenescenceviaautophagicfluxrestorationandintracellularNAD+elevation
Authors:XiaojuanHan,HaoranTai,XiaoboWang,ZheWang,JiaoZhou,XiaweiWei,YiDing,HuiGong,ChunfenMo,JieZhang
Journal:Agingcell(2016):416--427
Cell-LineSelectivityImprovesthePredictivePowerofPharmacogenomicAnalysesandHelpsIdentifyNADPHasBioMarkerforFerroptosisSensitivity
Authors:KenichiShimada,MikiHayano,NenCPagano,BrentRStockwell
Journal:Cellchemicalbiology(2016):225--235