Overview | PrinterFriendlyVersion |
Ex/Em(nm) | 484/520&630 |
MW | N/A |
CAS# | N/A |
Solvent | DMSO |
Storage | F/D/L |
Category | MicroBIOLOGy FlowCytometry |
Related | FluorescenceImaging |
Spectrum | AdvancedSpectrumViewer |
Note1:Thawkitcomponentsatroomtemperatureandcentrifugebrieflybeforestartingyourexperiment.Note2:TheKithasbeentestedatlogarithmicallygrowingculturesofthefollowingbacterialspecies:Bacilluscereus,B.subtilis,Clostridiumperfringens,Escherichiacoli,Klebsiellapneumoniae,Micrococcusluteus,Mycobacteriumphlei,Pseudomonasaeruginosa,P.syringae,Salmonellaoranienburg,Serratiamarcescens,Shigellasonnei,StaphylococcusaureusandStreptococcuspyogenes.Agrobacteriumtumefaciens,Edwardsiellaictaluri,Eurioplasmaeurilytica,Lactobacillussp.,Mycoplasmahominus,Propionibacteriumsp.,ProteusmirabilisandZymomonassp.Note3:Thefollowingistherecommendedprotocolforbacterialstaining.Theprotocolonlyprovidesaguideline,shouldbemodifiedaccordingtothespecificneeds.
1. Growbacteriainanyappropriatemedium.Bestresultsforhealthybacteriaareobtainedfromlog-phasecultures.Dilutethebacterialcultureto~106cto108cellspermLin0.85%NaClorappropriatebuffer.PreparesufficientsUSPensiontoprovide500µLpertestforflowcytometryor100µLpertestfor96-wellplate.
Note:Removetracesofgrowthmediumbeforestainingbacteria.Asinglewashstepisusuallysufficienttoremovesignificanttracesofinterferingmediacomponentsfromthebacterialsuspension.Phosphatewashbuffersarenotrecommendedbecausetheyappeartodecreasestainingefficiency.
2. MixequalvolumeofMycoLight™Green(ComponentA)andpropidiumiodide(ComponentB)inamicrofugetubetohave250xstainingdyemixture.
3. Add4µLofthe250xstainingdyemixture(fromstep2)toeachmLofthebacterialsuspension.Mixwellandincubateatroomtemperaturefor15minutes.Protectfromlight.
4. Thestainedbacterialcellscanbeanalyzedbyafluorescencemicroscope,fluorescentmicroplatereaderorflowcytometry.
5. Thefluorescencefrombothliveanddeadbacteriamaybeviewedsimultaneouslywithanystandardfluoresceinlongpassfilterset.Alternatively,thelive(greenfluorescent)anddead(redfluorescent)cellsmaybeviewedseparatelywithfluoresceinandTexasRedfiltersets.
References&Citations | PrinterFriendlyVersion |
1. Hu,W.;Murata,K.;Zhang,D.,ApplicabilityofLIVE/DEADBacLightstainwithglutaraldehydefixationforthemeasurementofbacterialabundanceandviabilityinrainwater.JEnvironSci(China)2017,51,202-213.
2. Karkashan,A.;Khallaf,B.;Morris,J.;Thurbon,N.;Rouch,D.;Smith,S.R.;Deighton,M.,ComparisonofmethodologiesforenumeratinganddetectingtheviabilityofAscariseggsinsewagesludgebystandardincubation-microscopy,theBacLightLive/Deadviabilityassayandothervitaldyes.WaterRes2015,68,533-44.
3. Wahman,D.G.;Schrantz,K.A.;Pressman,J.G.,DeterminationoftheeffectsofmediumcompositiononthemonochloraminedisinfectionkineticsofNitrosomonaseuropaeabythepropidiummonoazidequantitativePCRandLive/DeadBacLightmethods.ApplEnvironMicrobiol2010,76(24),8277-80.
4. Wahman,D.G.;Wulfeck-Kleier,K.A.;Pressman,J.G.,MonochloraminedisinfectionkineticsofNitrosomonaseuropaeabypropidiummonoazidequantitativePCRandLive/deadBacLightmethods.ApplEnvironMicrobiol2009,75(17),5555-62.
5. Berney,M.;Hammes,F.;Bosshard,F.;Weilenmann,H.U.;Egli,T.,AssessmentandinterpretationofbacterialviabilitybyusingtheLIVE/DEADBacLightKitincombinationwithflowcytometry.ApplEnvironMicrobiol2007,73(10),3283-90.
6. Leuko,S.;Legat,A.;Fendrihan,S.;Stan-Lotter,H.,EvaluationoftheLIVE/DEADBacLightkitfordetectionofextremophilicarchaeaandvisualizationofmicroorganismsinenvironmentalhypersalinesamples.ApplEnvironMicrobiol2004,70(11),6884-6.
7. Boulos,L.;Prevost,M.;Barbeau,B.;Coallier,J.;Desjardins,R.,LIVE/DEADBacLight:applicationofanewrapidstainingmethodfordirectenumerationofviableandtotalbacteriaindrinkingwater.JMicrobiolMethods1999,37(1),77-86.